invariable$547965$ - translation to αραβικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

invariable$547965$ - translation to αραβικά

PLANE PASSING THROUGH THE BARYCENTER OF A PLANETARY SYSTEM, PERPENDICULAR TO ITS ANGULAR MOMENTUM VECTOR
Laplace's invariable plane

invariable      
شىء ثابت

Βικιπαίδεια

Invariable plane

The invariable plane of a planetary system, also called Laplace's invariable plane, is the plane passing through its barycenter (center of mass) perpendicular to its angular momentum vector. In the Solar System, about 98% of this effect is contributed by the orbital angular momenta of the four jovian planets (Jupiter, Saturn, Uranus, and Neptune). The invariable plane is within 0.5° of the orbital plane of Jupiter, and may be regarded as the weighted average of all planetary orbital and rotational planes.

This plane is sometimes called the "Laplacian" or "Laplace plane" or the "invariable plane of Laplace", though it should not be confused with the Laplace plane, which is the plane about which the individual orbital planes of planetary satellites precess. Both derive from the work of (and are at least sometimes named for) the French astronomer Pierre Simon Laplace. The two are equivalent only in the case where all perturbers and resonances are far from the precessing body. The invariable plane is derived from the sum of angular momenta, and is "invariable" over the entire system, while the Laplace plane for different orbiting objects within a system may be different. Laplace called the invariable plane the plane of maximum areas, where the "area" in this case is the product of the radius R and its time rate of change dR/dt, that is, its radial velocity, multiplied by the mass.